Passive solar design in architecture – New trend?

by  Attila Talamon

August 07, 2013

The scientific basis for Passive Solar Building Design has been developed from a combination of climatology, thermodynamics ( particularly heat transfer: conduction (heat), convection, and electromagnetic radiation ), fluid mechanics / natural convection (passive movement of air and water without the use of electricity, fans or pumps), and human thermal comfort based on heat index, psychrometrics and enthalpy control for buildings to be inhabited by humans or animals, sunrooms, solariums, and greenhouses for raising plants.


Specific attention is divided into: the site, location and solar orientation of the building, local sun path, the prevailing level of insolation ( latitude / sunshine / clouds / precipitation (meteorology) ), design and construction quality / materials, placement / size / type of windows and walls, and incorporation of solar-energy-storing thermal mass with heat capacity.

While these considerations may be directed toward any building, achieving an ideal optimized cost / performance solution requires careful, holistic, system integration engineering of these scientific principles. Modern refinements through computer modeling (such as the comprehensive U.S. Department of Energy “Energy Plus” energy simulation software), and application of decades of lessons learned (since the 1970s energy crisis) can achieve significant energy savings and reduction of environmental damage, without sacrificing functionality or aesthetics.

In fact, passive-solar design features such as a greenhouse / sunroom / solarium can greatly enhance the livability, daylight, views, and value of a home, at a low cost per unit of space. Much has been learned about passive solar building design since the 1970s energy crisis. Many unscientific, intuition-based expensive construction experiments have attempted and failed to achieve zero energy – the total elimination of heating-and-cooling energy bills.

Passive solar building construction may not be difficult or expensive (using off-the-shelf existing materials and technology), but the scientific passive solar building design is a non-trivial engineering effort that requires significant study of previous counter-intuitive lessons learned, and time to enter, evaluate, and iteratively refine the computer simulation input and output.

One of the most useful post-construction evaluation tools has been the use of thermography using digital thermal imaging cameras for a formal quantitative scientific energy audit. Thermal imaging can be used to document areas of poor thermal performance such as the negative thermal impact of roof-angled glass or a skylight on a cold winter night or hot summer day.
The scientific lessons learned over the last three decades have been captured in sophisticated comprehensive energy simulation computer software systems.

Scientific passive solar building design with quantitative cost benefit product optimization is not easy for a novice. The level of complexity has resulted in ongoing bad-architecture, and many intuition-based, unscientific construction experiments that disappoint their designers and waste a significant portion of their construction budget on inappropriate ideas.
The economic motivation for scientific design and engineering is significant. If it had been applied comprehensively to new building construction beginning in 1980 (based on 1970′s lessons learned), America could be saving over $250,000,000 per year on expensive energy and related pollution today.

Since 1979, Passive Solar Building Design has been a critical element of achieving zero energy by educational institution experiments, and governments around the worldy, and the energy research scientists that they have supported for decades. The cost effective proof of concept was established decades ago, but cultural assimilation into architecture, construction trades, and building-owner decision making has been very slow and difficult to change.